博客
关于我
可视化_将两条曲线画在一个图中
阅读量:382 次
发布时间:2019-03-05

本文共 1280 字,大约阅读时间需要 4 分钟。

# 我们来显示验证和训练的损失曲线(见图 6-20)。# # 代码清单 6-38 绘制结果import matplotlib.pyplot as pltloss = history.history['loss']val_loss = history.history['val_loss']epochs = range(len(loss))plt.figure()plt.plot(epochs, loss, 'bo', label='Training loss')plt.plot(epochs, val_loss, 'b', label='Validation loss')plt.title('Training and validation loss')plt.legend()plt.show()# 图 6-20 简单的密集连接网络在耶拿温度预测任务上的训练损失和验证损失print(history.history)

在这里插入图片描述

print(history.history){   'val_loss': [0.8748725497482347, 0.3975294645299217, 0.3109697792993953, 0.32736822754454703, 0.32925783149578325, 0.3136130665345372, 0.3221883660155713, 0.3522020755638459, 0.32485968480552746, 0.3193821293605862, 0.3482952474704877, 0.34307795770766675, 0.32300440624104365, 0.3191545883966283, 0.33410712029247197, 0.34500235922256745, 0.3459017112153559, 0.35247658667855825, 0.3340611231497577, 0.3364521464519445], 'loss': [1.571558004796505, 0.4991003686189652, 0.3011927672326565, 0.2678608466684818, 0.25595426523685455, 0.24517172515392305, 0.23824044767022132, 0.23298490041494369, 0.22821045821905137, 0.2227226406633854, 0.2185874055325985, 0.21574989056587218, 0.21279067119956016, 0.210872103959322, 0.20845433309674263, 0.20609600335359574, 0.20415313729643822, 0.20333791476488114, 0.20114947184920312, 0.19921788474917412]}

转载地址:http://gmrg.baihongyu.com/

你可能感兴趣的文章
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,解决动态域名解析难题
查看>>
natapp搭建外网服务器
查看>>
NativePHP:使用PHP构建跨平台桌面应用的新框架
查看>>
nativescript(angular2)——ListView组件
查看>>
NativeWindow_01
查看>>
Native方式运行Fabric(非Docker方式)
查看>>
Nature | 电子学“超构器件”, 从零基础到精通,收藏这篇就够了!
查看>>
Nature和Science同时报道,新疆出土四千年前遗骸完成DNA测序,证实并非移民而是土著...
查看>>
Nature封面:只低一毫米,时间也会变慢!叶军团队首次在毫米尺度验证广义相对论...
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
nat打洞原理和实现
查看>>
NAT技术
查看>>
NAT模式/路由模式/全路由模式 (转)
查看>>
NAT模式下虚拟机centOs和主机ping不通解决方法
查看>>
NAT的两种模式SNAT和DNAT,到底有啥区别?
查看>>
NAT的全然分析及其UDP穿透的全然解决方式
查看>>
NAT类型与NAT模型详解
查看>>
NAT网络地址转换配置实战
查看>>