博客
关于我
可视化_将两条曲线画在一个图中
阅读量:382 次
发布时间:2019-03-05

本文共 1280 字,大约阅读时间需要 4 分钟。

# 我们来显示验证和训练的损失曲线(见图 6-20)。# # 代码清单 6-38 绘制结果import matplotlib.pyplot as pltloss = history.history['loss']val_loss = history.history['val_loss']epochs = range(len(loss))plt.figure()plt.plot(epochs, loss, 'bo', label='Training loss')plt.plot(epochs, val_loss, 'b', label='Validation loss')plt.title('Training and validation loss')plt.legend()plt.show()# 图 6-20 简单的密集连接网络在耶拿温度预测任务上的训练损失和验证损失print(history.history)

在这里插入图片描述

print(history.history){   'val_loss': [0.8748725497482347, 0.3975294645299217, 0.3109697792993953, 0.32736822754454703, 0.32925783149578325, 0.3136130665345372, 0.3221883660155713, 0.3522020755638459, 0.32485968480552746, 0.3193821293605862, 0.3482952474704877, 0.34307795770766675, 0.32300440624104365, 0.3191545883966283, 0.33410712029247197, 0.34500235922256745, 0.3459017112153559, 0.35247658667855825, 0.3340611231497577, 0.3364521464519445], 'loss': [1.571558004796505, 0.4991003686189652, 0.3011927672326565, 0.2678608466684818, 0.25595426523685455, 0.24517172515392305, 0.23824044767022132, 0.23298490041494369, 0.22821045821905137, 0.2227226406633854, 0.2185874055325985, 0.21574989056587218, 0.21279067119956016, 0.210872103959322, 0.20845433309674263, 0.20609600335359574, 0.20415313729643822, 0.20333791476488114, 0.20114947184920312, 0.19921788474917412]}

转载地址:http://gmrg.baihongyu.com/

你可能感兴趣的文章
MySQL:什么样的字段适合加索引?什么样的字段不适合加索引
查看>>
MySQL:判断逗号分隔的字符串中是否包含某个字符串
查看>>
MySQL:某个ip连接mysql失败次数过多,导致ip锁定
查看>>
MySQL:索引失效场景总结
查看>>
Mysql:避免重复的插入数据方法汇总
查看>>
MyS中的IF
查看>>
M_Map工具箱简介及地理图形绘制
查看>>
m_Orchestrate learning system---二十二、html代码如何变的容易
查看>>
M×N 形状 numpy.ndarray 的滑动窗口
查看>>
m个苹果放入n个盘子问题
查看>>
n = 3 , while n , continue
查看>>
n 叉树后序遍历转换为链表问题的深入探讨
查看>>
N!
查看>>
N-Gram的基本原理
查看>>
n1 c语言程序,全国青少年软件编程等级考试C语言经典程序题10道七
查看>>
Nacos Client常用配置
查看>>
nacos config
查看>>
Nacos Config--服务配置
查看>>
Nacos Derby 远程命令执行漏洞(QVD-2024-26473)
查看>>
Nacos 与 Eureka、Zookeeper 和 Consul 等其他注册中心的区别
查看>>